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The transient start of supersonic jets
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This study investigates the initial transient hydrodynamic evolution of highly under-
expanded slit and round jets. A closed-form analytic similarity solution is derived
for the temporal evolution of temperature, pressure and density at the jet head for
vanishing diffusive fluxes, generalizing a previous model of Chekmarev using Chernyi’s
boundary-layer method for hypersonic flows. Two-dimensional numerical simulations
were also performed to investigate the flow field during the initial stages over distances
of ∼1000 orifice radii. The parameters used in the simulations correspond to the release
of pressurized hydrogen gas into ambient air, with pressure ratios varying between
approximately 100 and 1000. The simulations confirm the similarity laws derived
theoretically and indicate that the head of the jet is laminar at early stages, while
complex acoustic instabilities are established at the sides of the jet, involving shock
interactions within the vortex rings, in good agreement with previous experimental
findings. Very good agreement is found between the present model, the numerical
simulations and previous experimental results obtained for both slit and round jets
during the transient establishment of the jet. Criteria for Rayleigh–Taylor instability
of the decelerating density gradients at the jet head are also derived, as well as the
formulation of a model addressing the ignition of unsteady expanding diffusive layers
formed during the sudden release of reactive gases.

1. Introduction
Highly unsteady under-expanded jets occur when a high-pressure gas suddenly

discharges into a lower-pressure gas through an orifice or nozzle. The emerging
high-pressure gas acts as a piston and drives a strong shock into the lower-pressure
gas. The multi-dimensional expansion of the shocked gases leads to the weakening
of the lead shock, but also to the formation of secondary inward-propagating shocks
created due to the faster rate of expansion of the high-pressure gas escaping from
the discharge orifice. An example is the well-known problem of the start-up of a
hypersonic nozzle, consisting of a shock transmission through a converging–diverging
nozzle (Smith 1966; Amman 1969). When the divergence angle increases to 90◦

as for an unconfined expansion, the outflow is no longer streamlined and the
preferential momentum of the gas along the jet axis gives rise to highly complex
vortex rings and interacting shocks. A series of schlieren photographs taken by
Naboko et al. (1972) illustrating the transient jet formation process is shown in
figure 1, where the lead shock, the interface separating the discharging and ambient
gases, the vortex ring and the inward-facing secondary shocks can be clearly seen.
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Figure 1. Shock transmission in Ar through a slit, giving rise to an under-expanded jet
(adapted from Naboko et al. 1972).
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Figure 2. Physical set-up and sketch of the dynamically similar jet.
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An explanatory sketch is shown in figure 2. The inner structure formed by the barrel
shock and Mach stem resembles qualitatively the structure of steady under-expanded
jets, which is established asymptotically as the lead shock decays to an acoustic wave
in the far field (e.g. Ashkensas & Sherman 1964; Miller 1988; Maté et al. 2001).

Such unsteady or pulsed under-expanded jet sources are of interest in a number
of applications. Examples are the starting of hypersonic nozzles in hypersonic wind
tunnels or rocket engines, relaxation and non-equilibrium phenomena in molecular
beams (see Campargue 1984 for review), population inversions in gasdynamic lasers
(Hurle & Hertzberg 1965), transient hypersonic jet ejecta in astrophysical settings
such extra-galactic jets (e.g. Falle 1991), and the accidental puncture of high-pressure
vessels or lines. The last example has particular bearing on the explosion safety
associated with the storage and handling of high-pressure gas fuels, such as hydrogen.
Upon release of the high-pressure fuel jet into the surrounding oxidizing atmosphere,
the driven shock can raise the air temperature by thousands of Kelvins, depending
on initial fuel storage pressure (Dryer et al. 2007; Liu et al. 2005; Golub et al.
2005). Lighter fuels such as hydrogen are also more dangerous, as they drive stronger
shocks. Ignition caused by the mixing of under-expanded hydrogen with shock-
heated air was observed experimentally by Wolanski & Wojcicki (1973), Chaineaux,
Mavrothalassitis & Pineau (1991), Groethe et al. (2005) and Dryer et al. (2007) and is
currently being investigated theoretically and numerically (Radulescu & Law 2005).
Preliminary numerical results were also recently presented in Golub et al. (2005) and
Liu et al. (2005).

Although the steady jet has attracted much attention in molecular beam studies
(Miller 1988; Campargue 1984), the details of the initial transient, particularly for large
pressure ratios and strong shocks, are still poorly understood. This initial transient,
during which the discharging and ambient gases mix at the interface via diffusion and
cool through global expansions, is of prime importance to the fuel release problem and
its ignition criteria (Radulescu & Law 2005). More generally, owing to the very fast
evolution and intrinsic flow instabilities during the discharge, accurate measurements
of the flow field are difficult to perform. Experimental investigations are usually
limited to phenomenological descriptions based on schlieren-type photographs, which
integrate along the line of sight and make an accurate appraisal of the three-
dimensional flow field difficult (Buckmaster 1964; Naboko et al. 1977; Lacerda 1986;
Golub 1994; Ishii et al. 1999). Numerical simulations are limited to weakly under-
expanded jets of inviscid perfect gases (Ishii et al. 1999). Limited resolution did not
allow capturing of the turbulent flow fields associated with the vortex rings observed
experimentally (e.g. Naboko et al. 1974; Lacerda 1986), nor resolving diffusive effects
at the contact surfaces. The numerical task is in general further complicated by
the presence of chemical reactions and when transport processes are enhanced
by turbulence. In the reactive under-expanded jet problem, a proper account of
the ignition phenomenon at the mixing layer separating fuel and oxidizer can only
be achieved via detailed calculations of the non-equilibrium diffusive mixing at the
molecular scale. Such a detailed simulation of the entire problem from the large
scales of the jet discharge to the molecular scales at the mixing interface would be
extremely difficult with the present computational capabilities. A simpler approach to
this problem is devised in the present study.

Owing to the complexity of the general jet discharge problem, the present study
seeks to elucidate the flow field in two stages. First, we conduct numerical experiments
on highly unsteady jets in order to determine the flow field and the physical processes
involved during the jet release of high-pressure gases. Since we are interested in
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the high Reynolds number limit, convective fluxes dominate over diffusive fluxes
everywhere except in very thin layers around contact surfaces and shocks where
large gradients are found. Away from these virtual discontinuities, the flow may be
considered inviscid and in quasi-equilibrium, modelled by the Euler equations for
a perfect gas. Secondly, we wish to model analytically the gasdynamic evolution
of the interface separating the two gases and obtain the evolution of its velocity,
pressure, temperature and density. This analytical result provides the varying boundary
conditions for an analysis of the diffusive inner layers, which can be conducted
separately on much smaller domains, and can be used to study the ignition process
of the reactive jet.

The approximate solution obtained is based on Chernyi’s boundary-layer method
for hypersonic flows (Chernyi 1961), which exploits the limit of strong shocks obtained
when the specific heat ratio approaches unity, also known as the Newtonian limit. The
method has yielded very good results in the past for unsteady blast wave problems
(see Chernyi 1961 and references therein). The present solution is based to leading
order on the solution given by Chekmarev (1975) for a hypersonic pulsed spherical
source. Its application to sonic jets, considered subsequently in Chekmarev & Stankus
(1984) is modified by reviewing the formulation of the model. The method is then
extended to higher orders using Chernyi’s theory in order to obtain the evolution of
the pressure, density and temperature at the interface as a function of time.

The paper first presents the numerical solution of highly under-expanded jets in
detail. This is followed by the derivation of the analytical model for the evolution of
the jet head surface, the estimation of the domain of validity of the model, and a
comparison with the numerical results and available experimental data.

2. Physical set-up, governing equations and numerical technique
The physical set-up we are addressing is shown in figure 2. A high-pressure gas A

enclosed by a thin wall is separated from an ambient gas B at much lower pressure.
At t̄ = 0, the virtual interface separating the two gases at x̄ = 0 is removed, permitting
the escape of the high-pressure gas through an aperture of radius R̄. Here an overbar
always denotes a dimensional quantity. We are considering the general problem where
the aperture is either a long slit or round. The gases are assumed to be perfect. Very
high Reynolds and Péclet numbers are assumed, such that viscous and diffusive
effects are restricted to regions with high gradients, such as the interface between
the two gases A and B, shock waves and vorticity layers. Away from these virtual
discontinuities, we seek a gasdynamic solution of the flow-field evolution, which is
governed by the Euler equations. Choosing pressure p̄, density ρ̄ and velocity ū as
dependent variables, the conservation of mass, momentum and energy can be written
in dimensional form as

∂ρ̄

∂t̄
+ ∇ · (ρu) = 0, (2.1)

∂(ρ̄ ū)

∂t̄
+ ∇ · (ρuu + ∇p̄) = 0, (2.2)

∂(ρe)

∂t̄
+ ∇ · ((ρe + p̄)ū) = 0, (2.3)

where ē is the total energy (internal and kinetic)

ē =
p̄/ρ̄

γ − 1
+

1

2
ūl ūl, (2.4)
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Initial conditions One-dimensional shock tube problem solution Similarity parameters

pAo/pBo ρAo/ρBo MS1 pi/pBo ρAi/ρBo ρBi/ρBo ui/aBo ρBo aBo

88.1 6.08 4.35 21.9 2.25 4.75 3.43 0.260 0.288
337 23.2 6.03 42.3 5.27 5.27 4.89 0.0679 0.288
700 48.3 7.01 57.2 8.07 5.45 5.73 0.0327 0.288

Table 1. Parameters for the three sets of simulations.

where the subscript l represents the lth component of the velocity vector, and a
repeated index follows the summation rule over the values taken by the index; γ is
the isentropic exponent and the sound speed is given by

ā2 = γ p̄/ρ̄. (2.5)

The same equations apply for both gases A and B, which are characterized by
different isentropic exponents γA and γB . The molecular weights of gases A and B
can also differ; however the gasdynamic solution to the problem posed above does
not depend explicitly on molecular weights. The molecular weights W̄ only affect the
final temperature field, which is computed from the final gasdynamic solution from
the ideal gas equation,

T̄ =
W̄ p̄

R̄uρ̄
, (2.6)

in each respective gas, provided the boundary surface separating the two gases is also
known. R̄u is the ideal gas constant.

For simplicity, the numerical simulations performed in this study are restricted to
gases which share the same isentropic exponent γ , such that we solve only one set
of governing equations for both gases. The case of gases with different molecular
weights addressed here does not pose any difficulty, and is achieved implicitly by
setting the correct initial density and pressure on each side of the partition. The
interface between the two gases is deduced by convecting an inert scalar α, set to 0
in gas A and 1 in gas B. The evolution of the α field is given by

∂(ρ̄α)

∂t̄
+ ∇ · (ρ̄ ūα) = 0. (2.7)

The finite numerical diffusion leads to a slight smearing of the scalar at the interface;
the interface location was hence assumed to correspond to the position where α =0.5.
Note that values of α differing from 0 or 1 is a pure artifact due to the diffusion of
numerical errors from the discretization of the equations, since this is not a solution
of (2.7) and the given initial conditions. Knowledge of the approximate position of
the interface permits us to use (2.6) to obtain the temperature field in each gas.

The parameters chosen in the simulations correspond to the expansion of hydrogen
gas in air. We take γ = 1.4 for both diatomic gases for simplicity. Given the molecular
weights of hydrogen and air (W̄A = W̄H2

= 2, W̄B = W̄ air = 29) and using (2.6), the
initial pressures and densities are set such that the temperatures are initially equal
in both gases. Table 1 gives the initial conditions for the three sets of simulations
considered in both the slit jet and round jet geometries.

In view of the subsequent analysis, the most convenient non-dimensionalization of
the governing equations is obtained by taking the scales imposed by the sonic throat
developed near the orifice in gas A as reference. For a steady isentropic expansion
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from the stagnation state of gas A, we obtain (Liepmann & Roshko 2001)

āAc = āAo

(
2

γA + 1

)1/2

, (2.8)

ρ̄Ac = ρ̄Ao

(
2

γA + 1

)1/(γA−1)

. (2.9)

The subscripts o and c denote the stagnation condition and the choked state respec-
tively. We thus choose the puncture radius R̄ as reference scale, ρ̄Ac as reference
density and āAc as reference speed. The non-dimensional variables hence become

x ≡ x̄

R̄
, ul ≡ ūl

āAc

, ρ ≡ ρ̄

ρ̄Ac

, p ≡ p̄

ρ̄Acā
2
Ac

=
p̄

γAp̄Ac

, t ≡ t̄ āAc

R̄
. (2.10)

The governing equations (2.1) to (2.3) remain unchanged in terms of the non-
dimensional variables. In the new variables, the aperture radius becomes unity. The
solution presented henceforth will be in terms of the variables defined in (2.10), with
symbols with an overbar always denoting dimensional variables.

Owing to the symmetry of the problem, the computational domain consists only
of the upper half (see figure 2). The domain also comprises the gas A reservoir, into
which unsteady expansions propagate. In all simulations presented, the external
boundaries of the computational domain are placed sufficiently far to not influence
the flow field. The two compartments are separated by a thin solid wall, with a
thickness nominally set to 0.125 (except where otherwise noted). The origin of the
horizontal x-axis in figure 2 is at the right-hand surface of the wall.

The hierarchical adaptive code µCobra, described in Falle & Giddings (1993) and
Falle (1991), is used to solve the governing equations in two-dimensional Cartesian and
axisymmetric coordinates, corresponding respectively to slit and round jets. The code
uses a second-order Godunov scheme in which the second-order Riemann problems
are constructed from the primitive variables using a quadratic averaging function. An
exact Riemann solver is used wherever necessary and a linear solver elsewhere. The
code uses a hierarchical series of Cartesian grids G0, . . . , GM , so that grid GM has
mesh spacing �x = h/2M , where h is the mesh spacing on the base grid G0. Grids
G0 and G1 cover the entire domain, but the more resolved grids only occupy regions
where increased resolution is required. Refinement is controlled by comparing the
solution of each conserved variable and also their rates of change on grids Gm and
Gm−1. If either of these errors is greater than the given tolerances, the grid is refined
to level Gm+1, m + 1 � M . These conditions can be used to ensure that regions where
the flow is changing rapidly, e.g. shocks, are always resolved to the highest level. The
code was extensively tested on various multi-dimensional compressible flow problems
and has been used successfully to investigate detonation waves (Sharpe 2001).

In the numerical scheme, artificial diffusion was added to the momentum and
energy fluxes determined from the Riemann solution in order to suppress the Quirk
instability (Quirk 1992) and to remove the entropy oscillations behind slowly moving
shocks, as described in Falle & Komissarov (1996). The viscous stress is defined in
terms of the left and right states in the Riemann problem and the local sound speed:

τ ij ∝ ρa
(
φi

L − φi
R

)
, (2.11)

where φi
L and φi

R are the re-constructed primitive variables (velocity u and temperature
T in the momentum and energy conservation respectively) at the cell interface in the
Riemann problem of the j -direction. Falle & Komissarov (1996) show that in smooth
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regions, where the solver is second-order accurate, the resulting diffusivities become
proportional to the square of the grid spacing �x. The highest numerical diffusivities
however occur in regions of the flow where discontinuities are present, where the
scheme becomes first-order accurate. The resulting kinematic viscosity and heat
diffusivity become proportional to the grid spacing �x (Falle & Komissarov 1996).
In the non-dimensional scales defined in (2.10), the resulting numerical Reynolds
number Renum is simply the inverse of the diffusivity and becomes

Renum =

(
0.2

(
a

aBo

)
�x

)−1

. (2.12)

where a is the local sound speed and aBo (the initial sound speed in gas B) is given in
table 1 for the present running conditions. Since the grid spacing �x ranges between
1 and 1/256 in the present simulations (see below) and taking characteristic values
of a ∼ 1, the minimum Reynolds number ranges from approximately 1 to 400 near
contact layers and shock discontinuities. These Reynolds numbers are commensurate
with experimental values corresponding to low initial pressures in the receiver gas B
on the order of 1 Pa, but are a few orders of magnitude lower than the values obtained
for jets issuing in gases at pressures on the order of 103–105 Pa (Korobeishchikov,
Zarvin & Madirbaev 2004), which are encountered in practical applications and jet
experiments. In this sense, the solutions presented below are much more diffusive
than would be encountered in the situation of a pressurized hydrogen jet emerging
into atmospheric pressure.

3. The flow field
3.1. Initial jet establishment

The early development of the flow field for a slit geometry immediately after the
release of the high-pressure gases is illustrated in figure 3 in terms of the pressure
gradient field. The figure shows the one-dimensional expansion wave established at
the axis (y =0), the diffraction of the shock formed around the corner in the positive
x-direction and the diffraction of the expansion wave propagating in the negative x-
direction. The initial condition is (pAo/pBo =337), corresponding to matched densities
at the interface after the gas release, as obtained analytically from the one-dimensional
shock tube solution. The solution was obtained on a uniform grid with mesh spacing
h = 1/256 (i.e. 256 grid points per aperture radius R̄). Upon release of the gases, an
initially Mach 6.0 planar shock wave is driven by the expanding gases along the axis,
in very good agreement with the well-known solution for the one-dimensional shock
tube problem (Liepmann & Roshko 2001). Results of the shock tube solution are
listed in table 1 for the cases considered. Note that the initial pressure ratio pAo/pBo

is sufficiently high that the flow at the tail of the one-dimensional rarefaction wave
at the axis is supersonic and the tail moves in the positive x-direction.

The lateral relaxation is more complicated than the well-known problem of shock
diffraction (Skews 1967) owing to the presence of the one-dimensional shock tube
expansion and the interaction of two centred waves associated with the two corners.
First, the lateral diffraction of the shock wave is not influenced by these non-
idealities at early times. The rapid lateral expansion of the gases around the corner is
qualitatively similar to the multi-dimensional shock tube problem (Brode 1959; Boyer
1960; Friedman 1961) where gases impulsively expand, such as from a pressurized
sphere. The signature of this multi-dimensional expansion is the secondary shock
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Figure 3. Pressure gradient field of the initial flow field of a slit jet at t = 3.71 × 10−2.

wave, clearly seen in the pressure gradient fields as the initial portion of what
will become the Mach shock of the jet and the lateral barrel shock (see figure 2).
The physical explanation for these secondary shocks is that a curved, geometrically
imploding expansion wave reduces the pressure at a faster rate than a corresponding
diverging curved shock, hence an inward moving weak shock wave is required to
match the pressures (Friedman 1961). The secondary shock initially appears near
the corner, where the gases are expanding in multiple dimensions. The inward-facing
Mach shock is convected outwards by the supersonic outflow while the barrel shock
remains attached to the expansion corner. Near the jet axis, where initially the problem
is purely one-dimensional, this secondary shock is initially absent.

The presence of the one-dimensional unsteady shock tube expansion centred at
x = 0 and its diffraction around the second corner at x = −0.125 complicates the flow
field at early times and makes it non-self similar, owing to the length scale of the
wall thickness. The diffraction of the one-dimensional expansion wave around the
left-hand corner leaves a zone of higher pressure behind. At subsequent times, this
weak train of compression waves reflects on the axis and propagates in the region of
decaying density, catching up to the main diffracting shock. This latter evolution is
illustrated in figure 4, which shows the distributions of density, pressure gradient and
scalar α at three successive times. For this calculation, we have used a base grid G0

with a mesh spacing of h =1/16 and M = 4 resolution levels, yielding an equivalent
grid spacing of 1/256 for the most refined grid G4. The weak train of compression
waves, clearly seen in the second frame, is first propagating upwards. These waves
preferentially amplify in the region to the left of the Mach shock, where the density
is decaying. Owing to the density gradient, the compression waves amplify to form
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Figure 4. Density, pressure gradient and passive scalar α flow fields of a slit jet
at (i) t = 0.0529, (ii) 0.15 and (iii) 0.333.

a shock. In the last frame, part of it has overtaken the main shock near the front,
and the other part has just traversed the lateral contact surface between the ejected
and shocked gases. This interaction further disrupts the vorticity layer on the sides of
the jet. Figure 4 also illustrates how the initial transient gasdynamics associated with
the lateral relaxation of expansion waves transform the flow field into the typical jet
structure illustrated in figure 2. Note that at these times scales in the observation, the
flow field is not self-similar. The length scale of the aperture opening introduces the
lateral relaxation of the flow.

The influence of the lateral relaxation on the flow field along the jet axis y = 0 is
shown in figure 5. The pressure, density and axial velocity profiles are shown at the
same time as the sequence illustrated in figure 4. The first profile, obtained before the
onset of multi-dimensional effects, is found to be in excellent agreement with the ideal
shock tube solution. As the multi-dimensional relaxation progresses, the parameters
near the aperture approach the sonic conditions of the developing sonic throat. Away
from the aperture, the establishment of the Mach shock is clearly seen. The expansions
closer to the aperture are stronger due to the higher volumetric expansion per unit
time and the gases acquire higher velocities. As a result, the pressure and density
drop faster than can be accommodated by the leading shock decay and rear-facing
compression waves give rise to the secondary shock.
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Figure 5. Pressure (a), density (b) and axial velocity (c) profiles along the axis y = 0
corresponding to the times illustrated in figure 4; dotted lines represent the conditions at
a virtual sonic throat.
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Figure 6. Pressure (a), density (b), axial velocity (c), transverse velocity (d) and passive
scalar α (e) flow fields in a slit jet at t =0.766, 2.19, 5.03 and 12.8.

3.2. Dynamically similar regime

The subsequent evolution of the pressure, density, velocity components and inert
scalar α is shown in figure 6. Owing to the larger domain, the base grid mesh spacing
was increased to 1 and we used 3 resolution levels, such that the most resolved grid
had a mesh spacing of 1/8. At these later times, the global morphology of the flow
field appears dynamically similar, with growing leading curved shock, contact surface
and the secondary shock system formed by the barrel and Mach shocks. The flow
field elements are labelled in the sketch of figure 2. The flow field is not strictly
similar. For example, the ratios between the inner and outer shock radii or between
the interface and shock radii evolve slowly while the scales change by more than an
order of magnitude. The apparent similarity is in good accord with the fact that the
scale of the aperture is now negligible compared with the characteristic dimensions
of the flow field. In this sense, the flow field achieves a symmetry centred around the
vanishing size aperture.

Small-scale instabilities are found to appear in the lateral flow field associated with
the re-circulation flow in the vortex rings. The flow is further complicated by a system
of shocklets at the periphery of the vortex ring, one of which is the extension of
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Figure 7. The density gradient flow field in a slit jet at t = 5.03 with different resolutions:
(a) 1 grid point/R̄, uniform grid; (b) 8 grid points/R̄, 3 refinement levels; and (c) 32 grid
points/R̄, 5 refinement levels.

the reflected shock at the Mach stem and barrel shock interaction, which bifurcates
in the vortex ring. Similar features have been obtained in numerical simulations by
Ishii et al. (1999) for weaker jets. The interaction of the shocks with the expanding
re-circulating flow makes an accurate reconstruction of the exact flow field difficult.
These small-scale details of the flow field within the vortex ring were found to change
as the grid was refined. For example, the density gradient field obtained with different
resolutions is shown in figure 7. The results illustrate well the change in the coherent
structures along the interface separating the two gases with increasing resolution.
Characteristic Kelvin–Helmholtz billow structures form on the interface separating
the downward-moving re-circulating gas A and gas B at a faster rate with increasing
resolution. As time progresses, these billows interact nonlinearly and are deformed
and folded by the passage of shocks. Owing to the presence of large density gradients
at the interfaces, the shock interactions lead to vorticity production by the baroclinic
interaction of misaligned pressure and density gradients.

Such instabilities involving multi-dimensional expansions, shocks, density interfaces
and regions of high vorticity would require the solution of the true non-equilibrium
gasdynamics involving transport mechanisms at small scales. Since we are solving
the inviscid Euler equations, the damping of the flow instabilities relies only on
the numerical diffusion, which is controlled by the resolution level. Owing to these
limitations, the small scales of the lateral part of the jet can only converge if the
dissipation is correctly modelled and independent of resolution, which is not the case
here. Nevertheless, the simulations do show the wide range of phenomena expected to
play a role as the Reynolds number increases. Note however that the real Reynolds
numbers are still much higher than the numerical ones, and phenomena of increasing
complexity are expected.

Although the lateral flow field does not converge, the laminar jet head dynamics
has converged to the correct solution. Figure 8 shows the pressure, density, velocity
and scalar α along the axis for the three resolution levels shown in figure 7. The flow
field near the axis is very well captured at different resolution levels, even at the lower
resolution with mesh spacing of 1.

The complete evolution of the pressure, density and velocity profiles along the jet
axis is shown in figure 9. The profiles of figure 5 are also shown. The flow field can
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be separated into two parts. First, the expansion from the aperture to the inward-
facing shock becomes steady, and a sonic throat is developed at x ≈ 0.3. As the
flow from the source to the secondary shock follows the steady expansion, the
layer of gas between the main and secondary shocks containing the gas interface is
continuously changing. While the main shock becomes progressively weaker owing to
its geometrical divergence, the inward-facing shock becomes stronger as it propagates
into expanding gas (although being convected outwards). Interestingly, the interface
between the two gases develops an inflection point in the density profile. This feature
will be discussed in the framework of the analytical model developed below.

3.3. Late stages of jet formation

The late stages of the slit-jet establishment are illustrated in figure 10 in terms of the
pressure, density and scalar α fields at four successive times for the matched-density
jet considered above. Owing to the much larger domains necessary to monitor the
late evolution, the calculations were performed on a uniform grid with a grid spacing
of unity. The wall thickness separating the two gases was also set to 1. The global
morphology of the late jet is in good agreement with the experimental photographs
of figure 1. The calculations further capture a number of interesting phenomena of
increasing complexity. First, the vortex rings, easily located by the regions of low
pressure, appear to be radiating a complex system of weak shocklets. These are also
clearly visible in the schlieren photographs of the late time evolution of jets of light gas
into heavier gases taken by Lacerda (1986) and in the high-pressure jets of Naboko
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Figure 9. Pressure, density and axial velocity along the slit-jet axis y = 0 for the four times
illustrated in figure 6 (successive solutions denoted by (i) to (iv); also shown are the profiles
of figure 5: dotted line, virtual throat condition; broken line, exact solution of symmetric
expansion from a choked source of dimension Λ= 1; dotted-broken line, maximum permissible
expansion velocity.

et al. (1974) and heated jets of Golub (1994). The mechanism for the formation of
this acoustic radiation is still unclear, although it appears to be associated with the
transient rapidly expanding regions of flow, individually isolated via instabilities in
the vortex rings. Simultaneously with these complicated shock systems, the interface
between the two gases becomes significantly more convoluted. The flow field acquires
all the basic attributes of compressible turbulence, with shock, vorticity and density
layer interactions. Based on the results of the resolution study shown in figure 7
performed at earlier times of the jet evolution, the morphology of the jet is likely to
become much more convoluted than captured numerically with the present limited
resolution. This is also anticipated based on the experimental observations made by
Golub (1994) regarding the intense turbulent structure of such jets.

Inspection of the global morphology of the jet also shows that the layer of gas
between the Mach shock and lead shock is also significantly disturbed and shows
density variations. This is unlike the earlier stages of the jet evolution, in which the
frontal part of the jet was very weakly affected by the lateral vortex rings. A tentative
qualitative picture of this effect can be constructed based on the temporal evolution



The transient start of supersonic jets 345

0

200

400y

p0 0.016ρ0 0.14 α0 1

600

x
2000 400 600 800

0

200

400y

600

0

200

400y

600

0

200

400y

600

x
2000 400 600 800

x
2000 400 600 800

Figure 10. Density, pressure and scalar α evolution at the late stages of the slit-jet formation
illustrating the acoustic radiation from the lateral vortex rings; successive frames taken at
t =26.6, 51.5, 81.2 and 111.

of the global jet morphology. Taking figure 10(c) for example, we see that the global
structure of the jet cross-section appears to be first diverging, than re-converging, to
finally diverge again. This is due to an initial over-expansion of the jet, followed by
a subsequent re-compression, and re-expansion, typical of pulsed radially expanding
flows (e.g. Brode 1959). This effect is also visible in the photographs of Naboko et al.
shown in figure 1. Golub (1994), Ishii et al. (1999) and Lacerda (1986) illustrate the
sequence of expansions and re-compressions at the very late stages of weaker jets
with multiple consecutive Mach stems. These were observed once the leading shock
has travelled a long distance compared to the location of the first Mach shock.

3.4. Round jet evolution

So far, we have considered the evolution of a two-dimensional slit jet. The discussion
presented also applies qualitatively to the round jet. We shall briefly present the
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interface separating driven and driver gases is at the same x location.

numerical solutions for the round jet, computed with an axisymmetric regularly
spaced base grid with a mesh spacing of h = 1/16 using 4 refinement levels, such that
the most refined level has a grid spacing of 1/256. Figure 11 shows the pressure and
density distributions for the three different jet strengths listed in table 1 at a time
when the jet interface is at the same location in the three cases. The flow details are
qualitatively the same as described above. The weaker jet appears to have dynamically
evolved to a much later morphology than the stronger jets, as indicated by the smaller
diameter of the Mach shock and the thicker gas layer between the Mach and lead
shocks. The scaling of the jet dynamics and morphology will be demonstrated below
in terms of the model developed.

Figure 12 shows the pressure and density distributions along the jet axis correspond-
ing to the profiles of figure 11. We see that in spite of the jet differences, the expansion
established between the aperture and the first inward-facing shock acquires a unique
steady structure, as was also verified from profiles obtained at later times.

4. Jet model
4.1. An equivalent one-dimensional flow field with line or point symmetry

The numerical solutions of the jet have revealed that a steady expansion wave is
developed between the sonic throat at the aperture and the inward-facing shock.
Since the flow in the steady expansion is bounded by the inward-facing shocks, it is
outside the domain of influence of the exterior flow field and the steady expansion
occurs as an expansion of accelerating gas into vacuum. If we are interested in
the dynamics occurring at scales much larger than the aperture, we can attempt
to model the flow field along the jet axis as a point- or line-symmetric flow field
originating from a sonic source of a dimension commensurate with the aperture
dimension. For the slit jet, the source would be a long cylinder, while for the round
jet, the source would be a sphere. To first approximation, the location of the centre
of symmetry of the source can be made to coincide with the plane of the aperture.
This idealization is shown schematically in figure 13. We hence replace the original
jet problem with a one-dimensional analogue of a pulsed sonic source. The pulsed
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Figure 12. Pressure (a) and density (b) along the jet axis for the three jet conditions shown
in figure 11; dotted line; virtual throat condition; broken line, exact solution of symmetric
expansion from a choked source of dimension Λ= 1.2.

source will yield a system comprising the main shock (S1), the inward secondary shock
(S2) and the contact surface (i), analogous to the jet-driven shocks and jet boundary
(Chekmarev & Stankus 1984). Our aim is to obtain a solution of this gasdynamic
problem and provide the link to the original jet problem.

The sole matching parameter in the above model is the size of the symmetric source,
to be adjusted such that the ensuing expansion from the model source matches the
expansion of the real three-dimensional jet along the jet axis. The solution for a
one-dimensional steady expansion from a sonic source, emanating from the surface
of a cylindrical/spherical source centred at x = 0 and of radius Λ can easily be
derived from the steady conservation equations of mass and energy (see for example
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Liepmann & Roshko 2001 or Bochkarev, Rebrov & Chekmarev 1969), yielding

a2 =

(
2

γA + 1
+

γA − 1

γA + 1
M2

)−1

, (4.1)

ρ =
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γA + 1
+

γA − 1

γA + 1
M2

)−1/(γA−1)

, (4.2)
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(
2

γA + 1
+
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, (4.3)
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, (4.4)

(
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=

1
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(
2

γA + 1
+

γA − 1

γA + 1
M2

)(γA+1)/2(γA−1)

. (4.5)

where M is the local Mach number of the flow and j is the geometric index (j = 1
or 2 for axial symmetry or spherical symmetry, respectively). By trial and error, we
found that a very good choice for the size of the choked source is Λ = 1 for slit jets
and Λ = 1.2 for round jets for the conditions considered in the numerical simulations.
The resulting steady expansion given from the above relations is shown in figure 9
for the slit jet and figure 12 for the round jet along with the numerical results,
illustrating the excellent agreement. The fact that Λ ∼ 1 yields a good agreement can
also be argued on a physical basis, since the characteristic dimension of the pulsed
sonic source should be of the same order as the radius of the aperture in the multi-
dimensional jet release. We emphasize that the replacement of the multi-dimensional
flow field with an equivalent one-dimensional flow field with cylindrical or spherical
symmetry and dimension Λ is the sole empirical treatment of the problem, since
a rigorous asymptotic approach seems difficult in view of the complexity of the
three-dimensional flow field at early times.

4.2. Model for the unsteady development of the interface and shocks

It is useful to replace the problem of a sonic pulsed source with the problem of a
hypersonic pulsed source (treated in Chekmarev 1975), which can be solved much
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more easily. The idealization is shown schematically in figure 13. In the new problem
of a pulsed hypersonic source (Chekmarev 1975), we assume that at time zero, a
source of radius x∗ is suddenly turned on with constant hypersonic velocity, which
is maintained subsequently. Our aim is to obtain a solution to this new gasdynamic
problem in the far field x � x∗ and to relate the source radius x∗ and parameters of the
source p∗, ρ∗, u∗ to the parameters (which are unity by our non-dimensionalization)
of the choked source of radius Λ and hence to our original jet problem. Such a
matching is lacking in the formulation of Chekmarev & Stankus (1984).

The equivalence between the original jet problem modelled by a pulsed sonic source
and the hypersonic source model is obtained by requiring that the hypersonic source
and the choked source yield the same mass flux at a given distance x from the centre
of symetry, i.e.

xj
∗ ρ∗u∗ = Λj × 1 × 1 = xjρu. (4.6)

The last equality explicitly shows that the mass flux at a given location in the steady
expansion is the same for both sources. If we further assume that the source, and
hence the entire flow field, is hypersonic (i.e. M2 � 1), expression (4.4) evaluated in
the hypersonic limit shows that the flow velocity is constant, given by

u = u∗ =

(
γA + 1

γA − 1

)1/2

. (4.7)

Expressions (4.6) together with (4.7) provide the distribution of density and velocity
with distance for the expansion from a hypersonic source.

The solution to the problem of a pulsed hypersonic radial source can be obtained
using Chernyi’s boundary-layer method obtained for strong shocks in the limit of
γ approaching unity, also known as the Newtonian limit (Chernyi 1961). Since the
maximal density behind an infinitely strong shock is given by (γ + 1)/(γ − 1), the
analysis takes the reciprocal of the maximal density as a small parameter

ε ≡ γA − 1

γA + 1
, (4.8)

which can be used to expand the position of a mass element x,its pressure and its
density as

x = x(0) + εx(1) + · · · , p = p(0) + εp(1) + · · · , ρ =
ρ(0)

ε
+ ρ(1) + · · · . (4.9)

The flow field can be separated in two parts. The first is the flow field between the
interface (i) and the main shock (S1). The second is the region between the secondary
shock (S2) and the interface (i). The flow between the source (denoted by an asterisk)
and the secondary shock (S2) is given by the steady expansion solution from a
hypersonic source given by (4.6) and (4.7).

4.3. Leading order of the hypersonic pulsed source problem

At leading order, the position of a mass element shocked by either of the shocks S1

or S2 corresponds to the position of the shocks themselves, since the shocked layer of
gas becomes infinitely dense and infinitely thin (see figure 13). Thus, at leading order,
the radii of the secondary shock, contact surface and leading shock coincide:

xi = xCS,0 ≈ xS1,0 ≈ xS2,0. (4.10)

The leading-order solution for the dynamics of the shocked gas interface (i.e. xi(t))
can be formulated following the treatment of Chekmarev (1975). The conservation
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of momentum (Chekmarev 1975) at time t for the gas layer bounded by the source ∗
and the leading shock S1, yields

2πjxj
∗ (ρ∗u

2
∗ + p∗) =

d

dt

[
(mAi + mBi)

dxi

dt
+ E∗S2

]
. (4.11)

The left-hand side is the momentum flux from the source. The first term on the right
is the rate of change of the momentum of the mass bounded by the two shocks, where
mAi and mBi denote the masses shocked by S2 and S1 respectively (see figure 13). The
second term on the right is the rate of change of momentum of the gas in the free
expansion bounded by the source and S2.

Since the source is hypersonic (i.e. M2 � 1), we have from the definition of Mach
number that p∗ < γp∗ 	 ρ∗u

2
∗ and thus the static pressure can be neglected on the

left-hand side of (4.11). Using (4.6), the term on the left of (4.11) can be re-written as
2πju∗Λ

j . The momentum E∗S2
is expressed as

E∗S2
= 2πj

∫ xS2

x∗

ρuxj dx ≈ 2πj (xi − x∗)Λ
j (4.12)

where use was made of (4.6) and (4.10). The mass mBi is the mass displaced by the
interface i, i.e. the initial density multiplied by the volume of gas displaced by the
interface:

mBi =
ρBo

j + 1
2πj

(
x

j+1
i − xj+1

∗
)
. (4.13)

The mass mAi is the difference between the total mass escaping from the source in
time t and the mass between the source and the shock S2, yielding

mAi = 2πjρ∗u∗x
j
∗ t − 2πj

∫ xS2

x∗

ρxj dx ≈ 2πjΛj (t − u−1
∗ (xi − x∗)) (4.14)

where use was made of (4.6), (4.7) and (4.10). Expressions (4.12)–(4.14) can be
substituted back in the momentum equation (4.11), which is integrated twice with the
initial conditions

xi(t = 0) = x∗,
dxi

dt
(t = 0) = u∗ (4.15)

yielding(
xi

x∗
− u∗t

x∗

)2

+
2u∗ρBox

j
∗

Λj (j + 1)(j + 2)

(
xi

x∗

)j+2

= 2

(
xi

x∗
− u∗t

x∗

)
− 2u∗ρBox

j
∗

Λj (j + 1)

(
xi

x∗

)
. (4.16)

Since we are interested in the behaviour of the solution in the far field, where
(xi/x∗) � 1, we see that the terms on the right-hand side are of higher order than
the terms on the left-hand side, and hence can be neglected. The resulting solution
becomes independent of the radius of the hypersonic source, yielding

(xi − u∗t)
2 +

2u∗ρBox
j+2
i

Λj (j + 1) (j + 2)
= 0. (4.17)

The fact that the far-field solution becomes independent of the initial transients is
the feature sought in the model, since different initial transients, such the shock
tube solution in our original problem or the choked source in the one-dimensional
idealization, are expected to give the same solution in the far field. Such behaviour
is typical in explosion problems where different initial conditions yield the same
leading-order solution in the far field. An example of such a dynamical behaviour is
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the quasi-self-similarity of explosion phenomena from finite-dimension energy charges
(Brode 1959). At scales much larger than the dimension of the initial charge, the flow
field approaches the ideal self-similar strong blast wave solution of the point charge
(Sedov 1959), provided the shock remains strong.

For convenience, following Chekmarev (1975), it is worth re-scaling the space and
time coordinates according to

ξ ≡ ρ
1/j

Bo

x

Λ
, τ ≡ ρ

1/j
Bo

t

Λ
. (4.18)

With these new variables, expression (4.17) can be solved for τ , yielding

τ = u−1
∗ ξi ±

√
2u−1

∗ ξ
j+2
i

(j + 1)(j + 2)
(4.19)

where u∗ is given by (4.7). The first term corresponds to the free expansion velocity,
while the second corresponds to the effect of the gas ahead of the interface. The
solution corresponding to the negative sign in front of the square root corresponds to
an accelerating interface, which could perhaps be associated with an imploding shock,
but can be ruled out for the present problem of an expanding shock supported by an
expanding interface. The solution sought corresponds to the positive sign in front of
the square root, which yields a decelerating interface. This completes the zeroth-order
solution giving the dynamics of the jet head after the jet is started.

Note that a similar solution was postulated by Chekmarev & Stankus (1984) in an
ad hoc fashion for sonic jets, yielding

τ =

(
γA − 1

γA + 1

)
ξi +

√
2Ω−(j+1)ξ

j+2
i

(j + 1)(j + 2)

(
γA − 1

γA + 1

)1/2

(4.20)

where the coefficient Ω takes on slightly sub-unity values (see below). The difference
with the present model lies in the first term on the right-hand side of (4.20), governing
the early dynamics of the jet. A comparison of our model and the one postulated
by Chekmarev & Stankus with experimental data and our simulation results is given
in § 5.

4.4. Higher-order solution: the shock and interface pressure evolution

Once the motion of the interface, or piston, is known, the higher-order solution
consists of determining the distribution of gas parameters between the interface and
the shocks. In the following model, we will assume that both shocks S1 and S2 are
strong, such that the interface solution derived above is expected to hold to higher
orders. With this simplification, we can focus only on the flow field between the
interface i and the shock S1. We shall proceed as in Chernyi (1961) for the general
derivation. It is useful to transform to a Lagrangian coordinate system, where we
track the mass engulfed by the shock. A Lagrangian coordinate m written as

m =

∫ x

0

ρxj dx (4.21)

corresponds to a quantity proportional to the amount of mass engulfed between the
piston and the shock. The lower bound on the integral is taken as zero for simplicity,
since we are now interested in the far-field solution given by (4.17), which eliminated
the scale of the source at time zero. The conservation of mass, momentum and energy
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for an inviscid gas are written as (Chernyi 1961)

∂x

∂m
=

1

ρxj
,

∂u

∂t
=

∂2x

∂t2
= −xj ∂p

∂m
,

∂

∂t

(
p

ργ

)
= 0, (4.22)

where the partial derivative with time is taken while keeping m constant and denotes a
material time derivative. Substituting (4.9) in (4.22) and using the Rankine–Hugoniot
relations at the shock boundary, we can solve for the leading- and second-order
solutions. We will omit the general derivation, which can be found in Chernyi (1961)
for the general case, and instead focus on the particular case where the interface
motion is given by a power law in time, and how it applies to the present problem.

By inspection of the evolution equation for ξi(τ ) given by (4.19), we see that the first
term on the right-hand side dominates at early times, while the second term, which
has a larger power-law exponent than the first, dominates at later times. This suggests
that the motion of the contact surface transits smoothly between two asymptotic
limiting forms given by power-law solutions. Since the exponents of the power-law
relationship do not differ significantly, we can approximate the dynamics as given by
a local power-law solution approximated by

xi = C
tn+1

n + 1
(4.23)

where n varies quasi-steadily as a function of t (or xi). We have verified the validity
of this quasi-steady assumption in the power-law exponent by comparing the results
with the more general theory, which can be found in Chernyi (1961), and found an
excellent agreement for the entire solution. From (4.17) and (4.18) and (4.23), the
exponent n can be expressed in terms of the interface coordinate and its first two
derivatives as

xi(t)ẍi(t)

ẋ2
i (t)

=
ξi(τ )ξ̈i(τ )

ξ̇ 2
i (τ )

=
n

n + 1
, (4.24)

which permits us to determine the implicit weak dependence of n(τ ) by evaluating
the velocity and acceleration of the interface using (4.19), yielding

n(τ ) = −
(

j + 2

j
+

√
8(j + 1)

j 2(j + 2)u∗[ξi(τ )]j

)−1

. (4.25)

Note that the implicit dependence ξi(τ ) in (4.19) can be made explicit for both j =1,
where it involves solving for the real roots of a third-degree polynomial, and for the
much simpler case of j = 2 where it involves seeking the roots of a second-degree
polynomial. The variation of n given in (4.25) is shown graphically in figure 14 for
j = 1, 2 and γ = 1.4. Clearly, the value of n changes very slowly while τ varies by
orders of magnitude, hence justifying the assumption of a quasi-steady exponent in
the power-law approximation for the dynamics.

The quasi-steady assumption in the variation of n permits us to use directly the
results derived by Chernyi for a piston propagating according to a power law in time
and supporting a shock. A self-similar solution results in a power-law propagation of
the shock with the same exponent. The ratio of the shock position and the interface
position is also equal to the ratio of the speeds, which are both given by

xS1

xi

=
ẋS1

ẋi

=
ξS1

ξi

=
ξ̇S1

ξ̇i

=
1

Ω (γB, n, j )
(4.26)
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where the function Ω(γB, n, j ) is given by

Ω(γB, n, j ) = 1 −
(

γB − 1

γB + 1

)
I (0, n, j )

j + 1
(4.27)

and is plotted in figure 15 for j = 1, 2 and γB = 1.4. The function I is defined as

I (δ, n, j ) ≡
∫ 1

δ

s
2n

γB (j+1)(n+1)

(
1 +

n(1 − s)

(j + 1)(n + 1)

)−γ −1
B

ds (4.28)

and can be evaluated by numerical quadrature. With the shock velocity known, the
shock pressure is obtained from the Rankine–Hugoniot relation across the strong
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shock:

pS1(t) =
2

γB + 1
ρBoẋ

2
S1(t) (4.29)

or in terms of a similarity variable Ψ as

ΨS1(τ ) ≡ pS1(τ )a2
Bo

pBo

=
2γBa2

BoM
2
s1

(γB + 1)
=

2γB

(γB + 1)

(
ξ̇i(τ )

Ω(γB, j, n(τ ))

)2

, (4.30)

which defines in closed form the similarity law for the decay of shock pressure pS1

or for the shock Mach number in terms of the similarity time variable τ , the specific
heat ratio γB , and the geometric index j .

Following Chernyi’s derivation, the similarity law for the pressure evolution at the
interface can also be expressed in closed form in terms of the shock pressure as

pi

pS1

= Θ(γB, n, j ) (4.31)

where the function Θ(γB, n, j ) is given by

Θ(γB, n, j ) =
γB + 1

2
+

n (γB + 1)

2 (j + 1) (n + 1)

− γB − 1

2

1

j + 1

(
2n

(j + 1)(n + 1)
+ j + 2

) ∫ 1

0

I (s, n, j ) ds (4.32)

and is plotted in figure 15 for j = 1, 2 and γB =1.4.
Combining (4.30) and (4.31), the similarity law of the pressure evolution at the

interface can be expressed as

Ψi(τ ) ≡ pi(τ )a2
Bo

pBo

=
2γBΘ

(γB + 1)Ω2
ξ̇ 2
i (τ ). (4.33)

An approximation to the pressure evolution at the interface is thus known analytically
in closed form.

4.5. The domain of validity of the solution

As discussed in § 3, the early time solution for the interface dynamics in the jet
problem is given exactly by the one-dimensional shock tube solution. This solution
remains valid until multi-dimensional expansions reach the axis, which occurs on a
unity time scale. Only after some transient equilibration time for the multi-dimensional
expansions, do we except the similarity solution derived above to be valid. The validity
of the similarity solution is hence given approximately by

x, t � 1, i.e. ξ, τ � ρ
1/j
Bo . (4.34)

As the flow evolves, the solution’s validity is expected to improve as long as the
leading shock remains strong, such that the approximations made to obtain the shock
and interface dynamics remain valid. The strong shock assumption requires that
(ξ̇S1/aBo)

2 ≈ (ξ̇i/aBo)
2 � 1. Expressing the interface velocity by differentiating (4.19),

we obtain the following condition for the shock to remain strong and the model to
remain valid:

ξi 	
(

2

j + 2

(
a−1

Bo − u−1
∗

)√ (j + 1)(j + 2)u∗

2

)2/j

. (4.35)
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Figure 16. Upper bound time for the validity for the present model for slit and round jets.

The corresponding time τmax can be obtained from (4.19), yielding the domain of
validity of the solution

ρ
1/j

Bo 	 τ 	 τmax. (4.36)

Since the upper limit τmax depends only on the non-dimensional sound speed aBo, it is
worth representing this limit graphically for future reference, shown in figure 16 for
j =1 and j = 2 and γ = 1.4 and γ = 1.66.

The early time solution given by the one-dimensional shock tube problem can be
incorporated when the pressure predicted in the similarity solution exceeds the shock
tube solution. Defining a reference time τ̃when the pressure predicted by the similarity
law is equal to the pressure given by the one-dimensional shock tube problem, the jet
interface solution can be approximated well in a piecewise continuous fashion by

(pi, ρiA,B
, TiA,B

) =

{
(p̃i, ρ̃iA,B

, T̃ iA,B
), τ < τ̃

(pi(τ ), ρiA,B
(τ ), T (τ )iA,B

), τ � τ̃ .
(4.37)

Note that this does not introduce any fitting, as the similarity solution is in closed
form. It only introduces a cutoff in the validity at early times, where the shock tube
solution is assumed to be valid.

4.6. The density and temperature at the contact discontinuity interface

The self-similar model for the piston and shock motion predicts zero density (and
infinite temperature) at the piston surface for a decelerating piston (Chernyi 1961), in
spite of the finite pressure. This is a mathematical consequence of the self-similarity in
piston-supported strong shocks, where the initial internal energy of the gas engulfed by
the shock is neglected. This result can be shown from the exact self-similar solutions
of strong shocks supported by pistons given by a power law, including the special case
of an unsupported strong explosion (Sedov 1959). Similarly, for accelerating pistons,
the density grows without bounds (and temperature vanishes) at the piston surface.
Our jet problem illustrates both these effects near the gas interface separating the two
gases. On the driven gas B side, the piston (i.e. the interface) decelerates the outward
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motion of gas B and weakens the lead shock. Hence the density is expected to drop as
the interface surface is approached. On the other hand, the interface accelerates the
motion of gas A inward via the secondary shock, hence the reverse effect is expected
of the density growing near the piston surface. One would hence expect that as the
real jet evolves towards the asymptotic self-similar regime, a sharp density gradient is
established at the gas interface of the same sign on each side of the interface. This is
in good accord with the simulations (e.g. figures 9 and 12).

Since strict self-similarity poses a singularity in density and temperature at the
piston surface, the real evolution of density and temperature at the interface can be
obtained by relaxing the similarity hypothesis, and considering the real jet problem
and the initial entropy gradients in the flow field given by the shock tube solution
that prevails at early times. In the absence of any dissipative effect, this entropy
difference remains in the flow at subsequent times. Furthermore, the numerical results
also show that the jet head does not interact with any strong shocks and hence can
be considered isentropic, at least until the end of the expansion region where the
frontal interface is destabilized by the lateral vortex rings and associated shocklets
(figure 10). Hence the evolution of the material layer near the contact surface during
the dynamically similar regime of the jet is isentropic. Writing the conservation of
entropy along a material trajectory, which corresponds to the gas interface, we obtain

Ds

Dt
=

D

Dt

(
p

ργ

)
= 0 (4.38)

written here in the Eulerian fixed reference frame. We note that this relation is an exact
statement of the conservation of entropy along a material surface, independent of the
previous analysis and assumptions therein. Denoting the initial interface properties
obtained from the solution of the one-dimensional shock tube problem by a tilda,
the evolution of the density and temperature on each side of the contact surface are
obtained by integrating (4.38) along the material path, yielding for a perfect gas

ρiA(τ ) = ρ̃iA

(
pi(τ )

p̃i

)1/γA

, ρiB(τ ) = ρ̃iB

(
pi(τ )

p̃i

)1/γB

. (4.39)

TiA(τ ) = T̃ iA

(
pi(τ )

p̃i

)(γA−1)/γA

, TiB(τ ) = T̃ iB

(
pi(τ )

p̃i

)(γB −1)/γB

. (4.40)

Since the pressure evolution pi(τ ) is known from the previous analysis to a good
approximation, the density and temperature evolutions are thus known as a function
of time with the same accuracy as the pressure evolution. This completes our solution
for the evolution of the interface.

Note that the initial one-dimensional shock tube solution at the interface governs
the subsequent density and temperature jump at the interface in the inviscid case. For
example, taking the ratio of the two equations in (4.39) yields

ρAi

ρBi

(τ ) =
ρ̃Ai

ρ̃Bi

(
pi(τ )

p̃i

)(γB−γA)/γAγB

(4.41)

which, if the isentropic indexes are equal, results simply in a constant density-jump
discontinuity given by

ρAi

ρBi

=
ρ̃Ai

ρ̃Bi

= const. (4.42)
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Figure 17. Density distributions for non-equal initial densities at the one-dimensional shock
tube solution interface: (a) decelerating interface is unstable to Rayleigh–Taylor instability,
(b) interface is stable.

Similar relations can also be written for the temperature ratio at the interface based
on the original temperature ratio obtained from the one-dimensional shock tube
problem. We thus see that in the absence of diffusion at the interface, the initial
conditions of the jet problem completely determine the jumps in temperature and
density at later times. Figure 17 illustrates qualitatively the resulting density profile
for different initial density gradients at the contact surface. The numerical simulations
verify this prediction, as can be seen from the profiles shown in figure 12, although
some numerical diffusion is present making a quantitative comparison difficult.

4.7. Rayleigh–Taylor instability

Knowledge of the density evolution of the interface also permits us to evaluate
the susceptibility of the interface to Rayleigh–Taylor instabilities (Taylor 1950).
A decelerating interface devoid of any diffusive phenomena is unstable whenever
(ρAi/ρBi) > 1. Expression (4.41) giving the density ratio at the interface in terms of the
initial density ratio allows us to determine which initial conditions will give rise to
the instability. For equal isentropic exponents γ in the two gases, (4.42) shows that
the interface is always unstable for (ρ̃Ai/ρ̃Bi) > 1. For the hydrogen/air parameters
used in the simulations above, neutral stability is obtained at equal densities at the
interface corresponding to a rather high initial pressure ratio of 337 (see table 1).
This is due to the low initial density of the compressed gas associated with its low
molecular weight, in spite of it being compressed. However, heavier gases, or denser
upstream stagnation states (as obtained in reflected shock tube experiments) may
promote significant Rayleigh–Taylor instabilities during the jet establishment.

It is interesting to evaluate the conditions for which the growth rate of small-
scale instabilities is comparable with the growth rate of the jet itself. Under these
conditions, the instability may affect the development of the jet and compromise the
model’s validity. Alternatively, when the growth rate of the instability is smaller than
that of the jet, initially small perturbations will apparently shrink when observed on
the scale of the jet, and hence are expected to minimally influence the jet dynamics.
If η denotes a perturbation of the position of the interface normal to its surface
set initially to η(t = 0) = A cos(ks), where s is a distance measured tangentially to
the interface, we are seeking to express the growth rate of the ratio of the interface
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perturbation and the interface location, i.e.

d ln(η/xi)

dt
=

d ln η

dt
− ẋi

xi

. (4.43)

The first term on the right-hand side represents the growth of the perturbation due
to the Rayleigh–Taylor instability, while the second represents the growth of the scale
of the flow itself. Taylor’s analysis (Taylor 1950) predicts a local growth rate of the
perturbation given by

d ln η

dt
=

√
−kẍi

ρAi − ρBi

ρAi + ρBi

(4.44)

where ẍi is the acceleration of the interface. The interface perturbation will grow at the
same rate as the jet head when the right-hand side of (4.43) vanishes. The condition
for an instability growth rate faster than that of the jet dimension is obtained from
(4.44), (4.24) and (4.42) for gases with equal γ :

ρ̃Ai

ρ̃Bi

�

1 +
1

kxi

(
−n + 1

n

)

1 − 1

kxi

(
−n + 1

n

) . (4.45)

The bracketed term is given from (4.24), with t evaluated at the corresponding xi via
(4.19). It is always greater than 1 for the range of permissible n. Expression (4.45)
is always satisfied when the denominator is negative, giving explicitly the range of
long-wavelength perturbations that will amplify faster than the jet growth in unstable
jets:

k <
1

xi

(
−n + 1

n

)
. (4.46)

Expressions (4.45) and (4.46) can be used to assess the jet surface stability during
the jet release. The most critical point is the initial release, when xi is small, and the
bracket term is large, yielding short-wavelength amplification.

4.8. Modelling the interface diffusion and jet ignition

So far, we have assumed an inviscid diffusionless interface, i.e. a contact surface,
governed by the Euler equations of motion. The implicit assumption was that of
large Reynolds and Péclet numbers, such that diffusive effects are limited to a very
narrow region of steep gradients present at such interfaces. Provided the boundary
layer is much thinner than the scales of the flow, the boundaries of the thin boundary
layer are only minimally affected by the diffusive fluxes and recover the solution
derived above. We are interested in formulating the evolution of the boundary layer
structure in the general case of a multi-component mixture involving diffusion and
chemical reactions. The problem to be addressed is the diffusion of a cold fuel into
a hot oxidizer, while the entire diffusion layer is subject to gasdynamic expansions.
Ignition involving radical and thermal explosions may be achieved for sufficiently
strong shocks and sufficiently low rates of expansion (Radulescu & Law 2005).

The natural framework of study is a one-dimensional Lagrangian formulation
which follows the material interface and hence we can dispense with treating the
convective fluxes in the description. Furthermore, since the scale of the boundary
layer can be assumed much thinner than the embedding flow field, local curvature
effects may be omitted, other than those due to global gasdynamic cooling. We use a
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Lagrangian mass coordinate

m̄′ =

∫ x̄

0

ρ̄ dx̄. (4.47)

The conservation of energy for a multi-component reacting fluid (Williams 1985) is
given in dimensional form by

c̄p

∂T̄

∂t̄
=

1

ρ̄

∂p̄

∂t̄
+

∂

∂m̄′

(
ρ̄λ̄

∂T̄

∂m̄′

)
−

K∑
k=1

h̄kw̄k

ρ̄
+ ρ̄2 ∂T̄

∂m̄′

K∑
k=1

c̄p,kD̄k

∂ȳk

∂m′ +
Φ̄diss

ρ̄
(4.48)

where Dufour effects associated with thermal diffusion have been neglected. The
consumption equation for the kth species also can be written as

∂yk

∂t̄
=

∂

∂m̄′

(
ρ̄2D̄k

∂T̄

∂m̄′

)
+

w̄k

ρ̄
. (4.49)

In the above equations c̄p is the mixture-averaged specific heat per unit mass, λ̄ is
the heat conduction coefficient, K the total number of species, c̄p,k is the specific heat
of the kth species, h̄k is its enthalpy, w̄k is its chemical production rate, D̄k is its
molecular diffusion coefficient, yk its mass fraction and Φ̄diss is the viscous dissipation
function. The last can be neglected since the flow in the vicinity of the interface in the
frame of the interface is negligible (recall that the fluid velocity is matched in a one-
dimensional gasdynamic contact surface). In words, expression (4.48) simply states
that the rate of sensible enthalpy increase (decrease) following a fluid element is due
to gasdynamic compression (expansion), heat conduction from neighbouring mass
elements, chemical heat release and higher-order effects associated with non-equal
specific heats of the different species and viscous dissipation of kinetic energy.

With the appropriate reaction rates and auxiliary relations for the mixture properties
(see Williams 1985) and the ideal gas law for the kth species, the interface evolution
is obtained by integrating (4.48) and (4.49), with initial conditions given by the
one-dimensional shock tube problem across the interface for (m̄′ < 0) in material A
and (m̄′ > 0)) in material B. The sole influence of the gasdynamic evolution solved
analytically above is through the prescription of the pressure time-derivative at the
interface appearing in the first term on the right-hand side of (4.42), which can
be expressed analytically from (4.37). This treatment is a valid approximation for
assessing ignition associated with a radical explosion, since prior to ignition, the
chemical processes release a small net amount of heat and do not affect the frozen
flow field solved in the frozen jet problem above.

Since the expansion term acts as a heat sink through global expansion cooling, it can
serve to quench the reaction process and prevent ignition, as already demonstrated in
premixed systems (Lundstrom & Oppenheim 1969; Eckett, Quirk & Shepherd 2000).
The analysis of the ignition process based on the numerical integration of (4.48) and
(4.49), and formulation of ignition criteria based on simpler forms of (4.48) obtained
under different approximations is currently under study.

5. Discussions
5.1. Jet similarity

The model formulated above for the evolution of the jet along its axis predicts that
the jet dynamics are similar in terms of the space and time coordinates defined in
terms of (4.18), with the sole parameters controlling the dynamics being the initial
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non-dimensional density ρBo and sound speed aBo of the receiver gas. These are listed
in table 1 for the jet strengths studied. Using (2.10), these two parameters can be
expressed in terms of useful dimensional quantities (which often serve as control
parameters in experiments) as

ρBo =

(
ρ̄Bo

ρ̄Ao

)(
γA + 1

2

)1/(γA−1)

=

(
p̄Bo

p̄Ao

)(
γB

γA

)(
āAo

āBo

)2 (
γA + 1

2

)1/(γA−1)

=

(
p̄Bo

p̄Ao

)(
W̄B

W̄A

)(
T̄ Ao

T̄ Bo

) (
γA + 1

2

)1/(γA−1)

, (5.1)

a2
Bo =

(
āBo

āAc

)2

=

(
āBo

āAo

āAo

āAc

)2

=

(
āBo

āAo

)2 (
γA + 1

2

)
=

γBW̄AT̄Bo

γAW̄BT̄Ao

(
γA + 1

2

)
. (5.2)

Before investigating in detail the model predictions and the range of validity of the
similarity relations predicted by the model, it is worth illustrating the scaling of the jets
and the range of validity of the model graphically. Figure 18 shows the pressure and
density fields obtained for the three jet strengths considered in the round-jet geometry
at two fixed similarity times τ . The pressure and density are normalized by the scales
associated with the reference receiver gas scales (recalling that pBo = γ −1

Bo ρBoa
2
Bo and

aBo is kept constant in the present simulations). At τ =1.07, we see that the weakest
jet is still being formed, and the secondary inward shock has not yet formed. However,
the second and third stronger jets have evolved over longer distances and now appear
to be in very good mutual quantitative agreement. This illustrates well how the jet
dynamics become similar once the jet is formed and the limitation of the model at
early times when the jet is still under formation as discussed in § 4.5.

The profiles taken at τ =13.9 shown in figure 18 illustrate the late jet formation
stage characterized by the slender barrel/Mach shock structure and a complex strong
acoustic radiation. These results were obtained at a lower resolution owing to the much
larger computational domain (5 refinement levels with a minimum mesh spacing on
the most resolved grid of 1/32). Although the local details of the unstable structure
of the jets differ, their global morphology, pressure and density levels scale well
according to the model predictions. We thus see that the jet dynamics scale according
to the variables of the model.

The scaling of the jets may be best seen in the axial density profiles of figure 19
extracted from the profiles of figure 18 at the two values of τ . Clearly, the profiles are
in very good agreement at both similarity time variables, with the exception of the
weakest jet which is still under formation. Also shown in figure 19 is the steady ex-
pansion in the limit of hypersonic flow, i.e. given by (4.6), (4.7) and (4.18), which yields

ρ

ρBo

= u−1
∗ ξ−j , (5.3)

which is in perfect agreement with the numerical results. This behaviour illustrates
how the steady expansion wave from a sonic source becomes invariant under the new
space coordinate ξ in the limit of hypersonic flow, i.e. once the flow has accelerated
to hypersonic speeds. We thus see that the flow field becomes similar both in the
shocked layers and in the steady expanding gases.

We may recall however that the scaling holds only in an asymptotic sense.
Differences appear in the structure owing to the initial entropy differences at the
contact surface, which are maintained in the limit of an isentropic flow along material
trajectories. One example is the density gradient inversion for strong jets, such as
the last jet shown in figures 18 and 19 for pAo/pBo = 700. The resulting effect is the
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Figure 18. Reduced pressure (upper half) and reduced density (lower half) fields in round
jets of initial strengths pAo/pBo = 88.1, 337 and 700 taken at two similarity times τ = 1.07 and
τ = 13.9 illustrating the approximate dynamic similarity of the flow field.

Rayleigh–Taylor (RT) instability which sets in along the material interface, as can be
seen by inspection of the density contour shown in figure 18 for the stronger jet. We
were however not able to fully study the RT instability owing to the lack of resolution
at the contact surface and the ensuing numerical diffusion, which effectively broadens
the interface and suppresses the instability at later times.

5.2. The interface dynamics

The evolution of the interface location computed for the three strengths of slit and
round jets is shown in figure 20. The results consist of the highly resolved simulations
at early times and the lower resolution results on wider domains obtained at later
times, as described above. They are compared with the analytical prediction of the
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Figure 20. Evolution of the jet interface along its axis for slit jets (j = 1) and round jets
(j = 2) obtained numerically for different strengths of the jet and comparison with the present
analytical model and the model proposed by Chekmarev & Stankus (1984).
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Figure 21. Evolution of the interface pressure along the jet axis for slit jets (j = 1) and round
jets (j = 2) obtained numerically for different strengths of the jet and comparison with the
present analytical model.

jet trajectory (equation (4.19)). Very good agreement with the model’s prediction is
observed after a critical time, corresponding approximately with the acoustic time
t ≈ 1. With increasing jet strength, the agreement occurs at earlier scaled times τ as
indicated by the scaling of the jet similarity time variable in (4.18). The initial region
of disagreement is the acoustic jet formation time. Some slight disagreement between
the computational results and the prediction also occurs at the very late stages of the
computation. This is when the shock can no longer be assumed to be strong, and the
model becomes less accurate. For reference, also shown in figure 20 is the solution
postulated by Chekmarev & Stankus (1984) (equation (4.20)). In the near field, their
solution over-predicts the interface velocity by a factor of ∼2.5, while good agreement
is obtained with the present model in the far field, since they both have the same
asymptotic form at late times.

5.3. The pressure, density and temperature at the interface

Figure 21 shows the evolution of the pressure at the jet interface along its axis
for the different slit and round jets investigated. At early times, the pressure is
constant, as given by the shock tube solution. After a few acoustic times of t ∼ 1
(or τ ∼ ρ

1/j

Bo ) the solutions become self-similar, as described above. The profiles are in
good mutual agreement until later times when the jet pressure becomes comparable
with the ambient pressure, the leading shock becomes weak and acoustic instabilities
set-in. Interestingly, the acoustic instabilities also appear at approximately the same
dynamical time in the different simulations. Also shown in figure 21 is the prediction
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for the interface pressure obtained by the self-similar model based on strong shocks
(equation (4.33)). The agreement is good for the entire range of the jet evolution,
except during the initial transient when the one-dimensional shock tube solution is
valid, and during the last stages of the jet evolution, when the lead shock becomes
weak. The analytical prediction captures approximately the correct pressure even at
the very beginning of the jet establishment. This unexpected agreement outside the
range of validity of the model is a bonus feature of the model, which permits us to use
the piecewise construction of the interface pressure proposed in (4.37) by artificially
piecing together the shock tube solution with the dynamic parameter-free model.

At late times however, when the interface and shock pressure become weak, the
present model under-predicts the interface pressure. This is the expected feature of the
model, which is based on the strong shock assumption and neglects the contribution
of the upstream internal energy of the gas. To illustrate the corrections that would
occur by relaxing the strong shock assumption of the leading shock, while maintaining
the same interface trajectory, we have computed the resulting pressure at the interface
by the non-self-similar model of Chernyi (1961) by retaining supplementary terms
involving the inverse square of the shock Mach number. The resulting prediction is
shown in figure 21 for the round-jet geometry as a dotted line. As can be seen, the
resulting prediction is identical to the strong shock prediction at early times, when
the shock is strong. At intermediate times, it offers a more accurate prediction of the
numerical results. At late times, however, it over-predicts the pressure at the interface.
We thus see that the correction introduced by accounting for the strong shock
effects in the pressure distribution, while maintaining the same interface trajectory as
above, does not yield a uniformly valid correction until late times. This is apparently
due to the fact that the interface trajectory itself should be corrected for the finite
Mach number effects. Indeed, the resulting interface trajectory was obtained with the
assumption that both the inward shock and lead shock are strong. At the later times,
while the inward-facing shock approaches its strong shock limit, the outward-facing
shock decays to a weak shock. This would correct the interface location to a smaller
distance from the centre, hence a lower lead shock velocity and a lower pressure at the
interface. A further discussion of these higher-order effects, which become important
in weak jets or jets which have evolved to the weak limit, will be discussed below
when comparing with experiments in weaker jets.

Once the interface pressure evolution is known, either from the numerical simulation
or the analytic model, the density and temperature can be obtained via the isentropic
relations in terms of the original gradients obtained from the shock tube solution,
as outlined in § 4.6. The accuracy of the density and temperature evolution at the
interface is the same as that of the pressure prediction. As an example, the density
and temperature profiles predicted via (4.39) and (4.40) are shown in figures 22 and
23 respectively for the slit jet with matched density. The results of the analytical
prediction are found to capture very well their evolution at the interface. However,
owing to numerical diffusion at the interface in the case of un-matched initial densities
at the interface of the shock tube problem, we were not able to compare the numerical
results with the inviscid predictions.

5.4. Comparison with experiment

We have further compared the model’s predictions with experimental results for both
slit jets and round jets. The results obtained by Belavin et al. (1973), reported in
Chekmarev & Stankus (1984) with the present scalings, and those of Buckmaster
(1964) for slit jets (j = 1) are shown in figure 24 for the range 0.3 <τ < 20. The slit
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Figure 22. Interface density prediction (dashed line) and the density profiles obtained
numerically for a slit jet with pAo/pBo = 337; circles denote the position of the interface
between the two gases determined by tracking the passive scalar α.
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Figure 23. Interface temperature prediction: T̄ Ai(dashed line) and T̄ Bi (dash-dot line) and
calculated temperature profiles for the density-matched slit jet, i.e. pAo/pBo = 337, and
T̄ Ao = T̄ Bo = 300K.

jets were obtained in a shock tube set-up. A slit in the endwall of a shock tube
permitted using the high pressure and temperature reflected-shock conditions as the
stagnation state of the jet expansion. Buckmaster used incident shocks with a Mach
number ranging between 6 and 8, yielding high acoustic speeds in the reflected-
shock gases permitting the generation of strong jet-driven shocks. The corresponding
non-dimensional sound speed in the receiver gas aBo was approximately 0.2. As
discussed above, the non-dimensional sound speed aBo given by (5.2) controls the
range of validity of the solution. From figure 16, we thus expect the present model to
capture Buckmaster’s experiments for τ � 300. This condition is satisfied by the data.
Reasonably good agreement is obtained with the present model. The experiments of
Belavin et al. were also performed using the shock tube technique with an upstream
stagnation temperature behind the reflected shock of 2500 K for the argon experiments
and a 1700 K for the N2 experiments, yielding values of aBo of approximately 0.4 and
0.5 respectively. From figure 16, we thus expect the model to capture the experimental
data for τ 	 20, which is at the limit of the range of available data. The experimental
results are in good agreement with the present model in the range of the model
validity, although the shocks and interfaces propagate at slightly higher velocities
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Figure 25. Comparison of the predicted interface location for strong round jets (j = 2) with
experimental data in monatomic gases.

than predicted. Note also that over the limited range of experimental data obtained
for slit jets, the model of Chekmarev & Stankus (1984) yields the same accuracy.

Round jets are in general more easily implemented experimentally and significantly
more data are available in the literature, although the data are quite scarce for the
strong jet conditions of interest here. Here we compare our model’s predictions in
figures 25 and 26 with the measured interface trajectory by Belavin et al. (1973)
(reported in non-dimensional form by Chekmarev & Stankus 1984), Korobeishchikov
et al. (2004), Kang et al. (1995) and Kay, Raymond & Rice (1986) for various gas
combinations. The experiments of Belavin et al. were performed under the same
conditions as described above for slit jets. From Figure 16, we thus expect the
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Figure 26. Comparison of the predicted interface location for strong round jets (j = 2) with
experimental data of N2 jets.

model to capture the experimental data for τ 	 5. Although the experimental data
lie outside this range, a perhaps fortuitous good agreement is obtained. The data of
Korobeishchikov et al., of Kang et al. and of Kay et al. were obtained with matched
initial stagnation temperatures, yielding values of aBo ≈ 1. From figure 16, the validity
of the model would be for conditions such that τ 	 1. By inspection of the data in
figures 25 and 26, we see that excellent agreement is obtained with the model in the
predicted range, while the model of Chekmarev & Stankus (1984) fails to capture
the early evolution. Outside the range of validity of the model, when the leading
shock becomes weak, the model fails to capture the experimental data, with interfaces
propagating much faster than predicted.

The conclusion that can be drawn from the comparison with available experimental
data for both slit and round jets is that over the range of validity of the model, the
agreement is from good to excellent. Nevertheless, for weaker jets the model fails
to capture the experimental results. Note that at these stages a much more complex
situation arises in the experiments than captured in the model. Not only would finite
Mach number corrections be necessary to account for the dynamics of the jet, as
discussed above in the framework of the developed model, but the jet itself is expected
to be highly unstable, as observed both in the present calculations and experimentally
(e.g. Golub 1994). Further work is required to elucidate the jet scaling at these later
times.

6. Conclusions and prospects
In the present study, we have studied the hydrodynamic evolution of highly under-

expanded jets and formulated an approximate similarity solution for the jet evolution
in the limit of negligible transport phenomena. The results were found to be in very
good agreement with numerical simulations and available experiments over the range
of validity of the model. The model can be used to study local diffusive and reactive
phenomena operating on the scales of the interface by using the analytic solutions
derived in the inviscid case as boundary conditions in the diffusive layer. Although
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the model is limited to quasi-one-dimensional phenomena occurring at the frontal jet
interface while the jet is still strong, it can be used to determine the conditions for
the jet self-ignition exactly in the hottest region of the flow, which experiences the
slowest volumetric expansion and is the first ignition locus (Golub et al. 2005; Liu
et al. 2005).

The present numerical simulations also indicated that the jet becomes acoustically
unstable and starts radiating shocks when it becomes weak. The frontal interface is
thus susceptible to both Rayleigh–Taylor and shock–density layer instabilities, which
can enhance turbulent mixing. These instabilities are particularly important in the
reactive jet case, since they can enhance the ignition process of the entire jet and lead
to the establishment of turbulent jet flames. These phenomena are not accounted by
the present model and require future study.
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